UV Irradiation Dosage Table

Tests conducted by Light Sources Inc - Orange, CT and verified by American Ultraviolet Company - Lebanon, IN revealed that the American-Lights® lamp produces 800µW/cm² @ 1' with 534FPM airflow at 55º F. UV dose = UV intensity x time in seconds. To compute the time needed to inactivate germs in the following chart at 1' distance divide the UV dose by 800. Example: for 90% kill factor of Bacillus subtilis spores: 11,600 divided by 800 = 14.5 seconds.

Please note that many variables (airflow, humidity, distance of microorganism to the UV light, irradiation time) take place in a real-world environment that make actual calculating of the UV dosage very difficult. However, it is proven that UV light will kill any DNA-based microorganisms given enough UV dosage. UV breaks down DNA on a cumulative basis. Microorganisms multiply rapidly if not controlled.

The following are incident energies of germicidal ultraviolet radiation at 253.7 nanometers wavelength necessary to inhibit colony formation in microorganisms (90%) and for 2-log reduction (99%):

 

Organisms

Energy Dosage of Ultraviolet radiation (UV dose) in µWs/cm2 needed for kill factor

Bacteria

90%

(1 log reduction)

99%

(2 log reduction)

Bacillus anthracis - Anthrax

4,520

8,700

Bacillus anthracis spores - Anthrax spores

24,320

46,200

Bacillus magaterium sp. (spores)

2,730

5,200

Bacillus magaterium sp. (veg.)

1,300

2,500

Bacillus paratyphusus

3,200

6,100

Bacillus subtilis spores

11,600

22,000

Bacillus subtilis

5,800

11,000

Clostridium tetani

13,000

22,000

Corynebacterium diphtheriae

3,370

6,510

Ebertelia typhosa

2,140

4,100

Escherichia coli

3,000

6,600

Leptospiracanicola - infectious Jaundice

3,150

6,000

Microccocus candidus

6,050

12,300

Microccocus sphaeroides

1,000

15,400

Mycobacterium tuberculosis

6,200

10,000

Neisseria catarrhalis

4,400

8,500

Phytomonas tumefaciens

4,400

8,000

Proteus vulgaris

3,000

6,600

Pseudomonas aeruginosa

5,500

10,500

Pseudomonas fluorescens

3,500

6,600

Salmonella enteritidis

4,000

7,600

Salmonela paratyphi - Enteric fever

3,200

6,100

Salmonella typhosa - Typhoid fever

2,150

4,100

Salmonella typhimurium

8,000

15,200

Sarcina lutea

19,700

26,400

Serratia marcescens

2,420

6,160

Shigella dyseteriae - Dysentery

2,200

4,200

Shigella flexneri - Dysentery

1,700

3,400

Shigella paradysenteriae

1,680

3,400

Spirillum rubrum

4,400

6,160

Staphylococcus albus

1,840

5,720

Staphylococcus aureus

2,600

6,600

Staphylococcus hemolyticus

2,160

5,500

Staphylococcus lactis

6,150

8,800

Streptococcus viridans

2,000

3,800

Vibrio comma - Cholera

3,375

6,500

Molds

90%

99%

Aspergillius flavus

60,000

99,000

Aspergillius glaucus

44,000

88,000

Aspergillius niger

132,000

330,000

Mucor racemosus A

17,000

35,200

Mucor racemosus B

17,000

35,200

Oospora lactis

5,000

11,000

Penicillium expansum

13,000

22,000

Penicillium roqueforti

13,000

26,400

Penicillium digitatum

44,000

88,000

Rhisopus nigricans

111,000

220,000

Protozoa

90%

99%

Chlorella Vulgaris

13,000

22,000

Nematode Eggs

45,000

92,000

Paramecium

11,000

20,000

Virus

90%

99%

Bacteriopfage - E. Coli

2,600

6,600

Infectious Hepatitis

5,800

8,000

Influenza

3,400

6,600

Poliovirus - Poliomyelitis

3,150

6,600

Tobacco mosaic

240,000

440,000

Yeast

90%

99%

Brewers yeast

3,300

6,600

Common yeast cake

6,000

13,200

Saccharomyces carevisiae

6,000

13,200

Saccharomyces ellipsoideus

6,000

13,200

Saccharomyces spores

8,000

17,600


UV Effectiveness Resources:

  1. Virus Sensitivity Index of UV disinfection. https://www.ncbi.nlm.nih.gov/pubmed/25495554
  2. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. https://www.ncbi.nlm.nih.gov/pubmed/14631830
  3. Can UV Light Fight the Spread of Influenza? https://www.cuimc.columbia.edu/news/can‐uv‐light‐fight‐spread‐influenza
  4. Molecular Mechanisms of Ultraviolet Radiation‐Induced DNA Damage and Repair https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010660/
  5. Predicted Inactivation of Viruses of Relevance to Biodefense by Solar Radiation https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1280232/
  6. Efficacy of an Automated Multiple Emitter Whole‐Room Ultraviolet‐C Disinfection System Against Coronaviruses MHV and MERS‐CoV. https://www.ncbi.nlm.nih.gov/pubmed/26818469
  7. Virus inactivation and protein recovery in a novel ultraviolet‐C reactor. https://www.ncbi.nlm.nih.gov/pubmed/15144527
  8. Inactivation of three emerging viruses ‐ severe acute respiratory syndrome coronavirus, Crimean‐Congo hemorrhagic fever virus, and Nipah virus https://www.ncbi.nlm.nih.gov/pubmed/31930543

     

    Leave a comment

    Please note, comments must be approved before they are published